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DISCRIMINATIVE SPARSE REPRESENTATIONS IN HYPERSPECTRAL IMAGERY

Alexey Castrodad,1 Zhengming Xing,2 John Greer,3 Edward Bosch,3 Lawrence Carin,2 and Guillermo Sapiro1

1. University of Minnesota, 2. Duke University, 3. DoD

ABSTRACT

Recent advances in sparse modeling and dictionary learning for
discriminative applications show high potential for numerous classi-
fication tasks. In this paper, we show that highly accurate material
classification from hyperspectral imagery (HSI) can be obtained with
these models, even when the data is reconstructed from a very small
percentage of the original image samples. The proposed supervised
HSI classification is performed using a measure that accounts for
both reconstruction errors and sparsity levels for sparse representa-
tions based on class-dependent learned dictionaries. Combining the
dictionaries learned for the different materials, a linear mixing model
is derived for sub-pixel classification. Results with real hyperspec-
tral data cubes are shown both for urban and non-urban terrain.
Index Terms: Sparse modeling, hyperspectral imagery, classifica-
tion, dictionary learning.

1. INTRODUCTION

A hyperspectral imager is a powerful tool used for biomedical, en-
vironmental, and military applications. HSI is a collection of (pos-
sibly hundreds of) narrowly-spaced channels or bands, measuring
energy at different wavelengths from the electromagnetic spectrum,
and thus allowing spectroscopic analysis. In addition to the geo-
metric spatial features that provide shape information in a typical
grayscale or RGB image, HSI also provides spectral features that al-
low a much richer characterization of the objects and materials in a
scene

There are numerous intrinsic challenges associated with HSI.
The first one is sensor noise, which is inherent in every electro-
optical sensor. There are also complicated light interactions occur-
ring in the atmosphere and on the targeted surface. For example,
the atmosphere includes energy from contributing factors such as
clouds, haze, and water vapor that need to be corrected. At the sur-
face level, spatial resolution and reflected light off nonuniform sur-
faces generate spectral mixtures, meaning that the measured energy
at each pixel is often not from a homogeneous source but a combina-
tion of multiple materials. In addition to these physical factors, the
many narrowly-spaced spectral bands yield high-dimensional data,
thus making visualization, interpretation, transmission, and exploita-
tion difficult. On the other hand, these spectral bands are highly-
correlated and redundant. Consequently there is a need for methods
that capitalize on that redundancy to address the processing chal-
lenges of high-dimensional data.

Sparse representations express the signal’s information with
possibly the smallest amount of data from a (usually redundant)
dictionary; algorithmically this corresponds to finding a solu-
tion to an underdetermined system of linear equations, condi-
tioned/constrained to be sparse (see [1] and references therein).
Originally, sparse representations were performed using a fixed dic-
tionaryD ∈ ℜb×M , whereM is the number of atoms, andb is
the signal’s dimension (e.g., DCT, Fourier basis). It is often more

appropriate to “learn” these dictionaries and adapt them to the data.
State-of-the-art results have been reported in applications related
to noise removal, inpainting, discriminative learning, classification,
and unsupervised labeling (clustering) [2, 3, 4, 5, 6, 7, 8]. Recently,
a non-parametric (Bayesian) approach to sparse modeling and com-
pressed sensing was proposed in [9]. The dictionary is learned using
a beta process, which automatically estimates the dictionary size
M , and makes no explicit assumption on the noise variance. In
addition, it can deal with non-uniform noise sources in the channels,
a problem often encountered in HSI. This is the approach used in
this paper when reconstructing the HSI from sub-sampled data.

We first propose a framework for supervised full-pixel mate-
rial identification in remotely sensed HSI using dictionaries that are
learned for specific classes. The class label assignment for each pixel
is determined by a function that takes into account both the spar-
sity level and the reconstruction error, and was originally proposed
in [7]. Furthermore, we evaluate this technique by validating the
data quality of significantly undersampled and then reconstructed
HSI following [9]. We address two possible cases. The first case
deals with (noisy) training data obtained from the reconstructed im-
age itself. This can be seen as having noa-priori information or high
quality spectra to match with the spectra in the scene. The second
case deals with “high” quality training data, that is acquired from
non-subsampled spectra. This could be seen asa-priori measure-
ments or knowledge of the contents of the scene or spectra that is
acquired in a laboratory. Finally, we deal with spectral mixing by
using a combination of atoms from the trained dictionaries.

The remainder of this papers is organized as follows. In Section
2 we describe the proposed approach for HSI supervised classifica-
tion. Section 3 extends the method to spectral unmixing. Section 4
gives numerical examples, and the last section presents concluding
remarks, implications, and future research directions.

2. SUPERVISED CLASSIFICATION OF HSI

In this section, we consider supervised classification. By supervised
classification we mean that there are known classes, and for training
purposes, known samples pertaining to those classes.

Let the hyperspectral image pixel be represented by the vector
valued functionyi(r, c) : ℜ2 → ℜ, 1 ≤ i ≤ b, whereb denotes the
number of spectral bands. The following model is assumed during
this work: Y = X + W , whereY = [y1, ...,yn] ∈ ℜb×n repre-
sents the sensor measurements,W is a Gaussian noise source, and
X are the “true” signals (target’s spectral response). The classifi-
cation problem becomes that of assigning a label to an estimate of
X.

2.1. Learning the HSI dictionaries

Assume there areC possible classes, whereCj is thej − th class
representing a pure material. Let the training set forCj be Ψj =



[ψj
1
, ..., ψj

nj
], a matrix where the columnψj

i ∈ ℜb is thei−th train-
ing sample corresponding to thej − th class. At the training phase
of the algorithm, we learn a dictionary (for each class) by solving
the following standard sparse modeling problem:

(Dj , Aj) := argmin
D,A

‖Ψj −DA‖2

F + λ‖A‖p, (1)

where‖ · ‖F is the matrix Frobenius norm,Dj ∈ ℜb×M is the
learned dictionary,Aj = [α1, ..., αnj

] ∈ ℜM×nj is the associated
matrix of sparse coefficients,λ is a nonnegative penalty parameter
that controls the sparsity of the solution, andp can take the value 0 or
1. Whenp = 0, thel0 pseudonorm counts the number of nonzero en-
tries in the coefficient vectors. Lettingp = 1 is a convex relaxation
of the problem and is commonly referred to as Lasso [10].1 The l1
case tends to be more stable and is preferred during this work.2 The
solution to problem (1) is found using coordinate descent type of
algorithms (e.g., KSVD [11]).

2.2. Label assignment

Once the dictionaries are learned, we seek to assign a class labelj

to each pixel (or block of pixels stacked in column format) to be
classified. As proposed in [7], we apply a sparse coding step to the
samplesy using each of the learned dictionaries, and simply select
the labelj corresponding toDj that gives the minimum value of

R(y, Dj) = ‖y −Djα‖
2

2 + λ‖α‖1, ∀j, (2)

α ∈ ℜM . In other words, our classifier is simply the mapping

f(y) = {j|R(y, Dj) < R(y, Di), i ∈ [1, ..., C], i 6= j}. (3)

This means that pixels efficiently represented by the collection of
subspaces defined by a common dictionaryDj are classified to-
gether. This measure for supervised classification accounts both for
reconstruction (fitting) error and sparsity. Without the sparsity term,
the classifier (3) can be seen as anEuclidean Distance Classifier.
The sparsity term especially helps in the presence of noise and/or
other artifacts. This naturally comes from the fact that the labeling
will tend to prefer the class where the data can be represented in the
sparsest way possible, even in cases where the reconstruction error
for the tested signal is the same for more than one class. See also
[12] for a related penalty when considering the data itself instead of
class-dictionaries.

3. SPECTRAL UNMIXING

In the procedure just discussed, there is prior knowledge of the pos-
sible sources in the scene, and for each pixel, a label is assigned,
corresponding to the class that provides a minimum value in (2).
This is a classification at the full-pixel level. It is also possible to
extend this to a pixel having one or more labels, implying that it
is not composed of a pure class of material, but a combination of
these. This is known asspectral unmixing, and can be considered as
a special case of source separation. The main idea is to decompose
each pixel into a linear (or nonlinear) combination of pure sources
(i.e., endmembers). Focusing in the linear mixing model, a vector

1The problem in (1) is not convex, however, is biconvex: fixingD makes
it convex inA and viceversa.

2Experiments were done in this work using bothp = 0 and p = 1.
Results using p = 0 are not shown due to space constraints.

with fractional abundances is calculated for each pixel. In an uncon-
strained case, this can be easily solved using least squares. However,
to make the problem physically meaningful, this abundance vector is
constrained to be nonnegative and to sum to one, and is known as the
Constrained Least Squares (CLS)model. It is also desirable that this
abundance vector be sparse, meaning that the material at each pixel
is explained with as few possible pure sources (see also [12]). A least
squares inversion will typically produce a dense solution, however,
the sum to one constraint in the CLS model induces a sparse solu-
tion. See [13] and references therein for more details in the CLS and
other models. More recently, the Least Squares L1 (LSL1) model
was proposed for this spectral unmixing problem [12, 14]. In this
model, the sum to one constraint was relaxed, meaning anl1 con-
straint on the abundance coefficients needs to be minimized, instead
of summing strictly one. In addition, as mentioned above, [12] used
the data itself instead of learned dictionaries.

An extension to the problem of spectral mixing can be natu-
rally formulated from the framework in Section 2. The model (1) is
very similar to what is known as the linear mixing model, where
D would represent the materials andA the corresponding abun-
dances. In order to adapt it, we need to add a nonnegativity con-
straint on both the dictionary and coefficients. Now, compared to
the traditional models, where the endmembers are real spectral sig-
natures, here the solution is a linear combination of subspaces rep-
resenting these endmembers (D are learned atoms and not actual
pure materials). One possible advantage of this approach is that it
can account for material variability caused for example by factors
like noise, non-homogenous substances, etc. The main idea is to
train a dictionary for each class, and then form a new dictionary
D := [D1, ..., DC ] ∈ ℜb×MC , similarly in nature to the approach
followed in [8] for robust face recognition. In this way, the sparse
coding on each pixel comes from a “mixed” union of subspaces (in
contrast, [8] expected a single sub-dictionary to be selected at each
time). In this work, we use the fully constrained sparse coding step
by using a sum to less or equal to one constraint in the abundance
coefficients. This is equivalent to solving the sum to one constraint
with a zero vector included as an endmember, and therefore allowing
shade and dark pixels to be accounted for [15], and addressing the
case where there are missing sources. Finally, the problem is solved
using a primal-dual strategy. The core algorithm becomes

Input: Hyperspectral sceneY , training sets{Ψj}
C
j=1, number

of dictionary atomsM , sparsity parameterλ.
Output: Sparse matrix of fractional abundancesA for
yi, i = 1, ...n.
Training:

• For each training setΨj = [ψj
1
, ..., ψj

nj
], learn

(Dj , Aj) := argminD≥0,A≥0 ‖Ψj −DA‖2

F +λ‖A‖1.

• D := [D1, ..., Dj ], j = 1, ..., C.

Abundance estimates:

• For each pixelyi, solve:

α
∗
i = arg min

αi�0,‖αi‖1≤1

‖yi −Dαi‖
2

2.

Fig. 1. Algorithm for sub-pixel supervised classification in HSI.



4. EXPERIMENTAL RESULTS

A summary and discussion of the experimental results is presented
in this section. The first HSI cube tested is theAPHill scene (with
permission from the US Army Engineer Research and Develop-
ment Center, Topographic Engineering Center, Fort Belvoir, VA),
acquired by the HyMAP sensor, with a total of 432,640 pixels. Each
pixel is a 106 dimensional vector after removing the high water
absorption and noise damaged bands. The second HSI cube tested
is the Urban scene, acquired by the HyDICE sensor, and has a
total of 94,249 pixels, and a subset of 162 channels. It is publicly
available at http://www.agc.army.mil/Hypercube/pub/URBAN.zip.
The “known” material labels for APHill, and their corresponding
training and validation samples are:C1: coniferous trees (967, 228);
C2: deciduous trees (2346, 234);C3: grass (1338, 320);C4: lake1
(202, 38);C5: lake2 (112, 122);C6: crop (1026, 58);C7: road
(197, 50);C8: concrete (74, 25); andC9: gravel (87, 38). For the
Urban scene, the “known” material labels, and the corresponding
training samples are: trees (515), grass (289), and road (36).

As mentioned before, there are several objectives for these
reported experiments. First, to test the proposed supervised al-
gorithm both at the full-pixel and sub-pixel (spectral unmixing)
level. Second, we include results for cases where the data has
been reconstructed from significantly subsampled (compressed)
images using the technique described in [9]. This assesses how
the classification accuracy is degraded when drastically reducing
the available measurements. Furthermore, the algorithm is tested
under two possible discrimination tasks. The first one makes no
a-priori knowledge assumption, and attempts to match “known”
classes from the scene itself, meaningΨ ⊂ Y . The second one
attempts to match spectra from each class that has been already
measured, meaningΨ 6⊂ Y . For example, it could be laboratory
spectra modified to fit the sensor’s characteristics, or previously
acquired spectra at full sampling rate (higher quality). For all the
experiments,M = 25, andλ = 0.01 and we used the SPAMS
software available at http://www.di.ens.fr/willow/SPAMS/.

4.1. Full-pixel labeling

For the first experiment, samples from the image itself are used to
train the classifier. Training and validation classification accuracies
for each of the 9 classes using the original image, and a reconstruc-
tion from only20% of the original data (with measured pixels and
bands selected uniformly at random), are summarized in tables 1
and 2 respectively.3 Additionally, the accuracies for training and
validation sets for several sampling sizes is summarized in Table 5.
Pixels with incorrect label assignments most often occurred for the
coniferous/deciduous/grass (C1/C2/C3), and road/concrete/gravel
(C7/C8/C9) classes. This should not be surprising. First, grass and
trees share common spectral features (e.g., high amplitude at the
green visible and near infra-red regions). Also, it is common to
encounter mixing between those two materials (trees surrounded by
grass). Similarly, for the case of concrete and road, spatial resolution
plays an important role (sidewalks around roads), but also the fact
that concrete and road are spectrally very similar. These effects are
increased with the data reconstructed from limited samples, where
the spatial interpolation decreases subtle geometric details, and crit-
ical spectral resolution may be carried away with the missing data.

3The patch dimensions in Table 2 and subsequent tables indicate the size
used in [9] for the reconstruction, thereby incorporating spatial coherence in
the process. A patch size ofp×p indicates that vectors of dimensionbp2 are
used.

C1 C2 C3 C4 C5 C6 C7 C8 C9
0.997 0.990 0.996 1 1 0.998 1 1 1
0.951 1 1 1 1 1 0.72 1 0.973

Table 1. Per class classification accuracies for the dictionaries
learned from the APHill image (without subsampling for this exam-
ple). First row: classification for training samples. Second row:
classification for validation samples.

C1 C2 C3 C4 C5 C6 C7 C8 C9
0.991 0.972 1 0.985 1 1 0.992 1 1
0.925 1 1 0.973 0.991 1 0.980 0.92 1

Table 2. Per class classification accuracies for a reconstructed
APHill image with3 × 3 patches and randomly sampling only20%
of the data. First row: classification for training samples. Second
row: classification for validation samples.

For the second case, where the sources are availablea-priori, the
samples used for the training phase are not extracted from the image
to be tested. Instead, the samples were drawn from the original data
(fully sampled). This poses a more difficult problem than the first
case since the data source is different (needs to be matched to fit the
data being tested). This effect can be noticed by looking at Table

3, where the spectral angle, given byθ(x,y) = cos−1( x
T
y

‖x‖2‖y‖2

),
measures how far is the reconstructed data from the original. For-
tunately, in this case, the largest angles correspond to the lake1 and
lake2 classes. A possible explanation for this is that most of the en-
ergy coming from the sun is absorbed by water, and thus the signal to
noise ratio is much lower in those regions. Individual classification
results for the case of using20% of the original data are summarized
in Table 4.4 Note that high accuracy is still attained when80% of the
data is missing. In addition, although some of the overall accuracies
are low, even when98% of the data is missing, most of the incorrect
labels occurred with classes with strong similarities (e.g., road and
concrete). So even very low sampling measurements could provide
with relatively accurate, wide-area mappings, as seen in Figure 2 and
Table 5.

patch size, data % Minimum Maximum Average Median
3× 3,2% 0.5600 65.0973 2.5234 1.8717
3× 3,5% 0.3119 58.2472 1.4068 1.095
3× 3,10% 0.2526 23.65 1.0279 0.8505
3× 3,20% 0.2429 13.2451 0.9275 0.7768
4× 4,2% 0.4585 77.0751 2.3063 1.6707
4× 4,5% 0.2917 67.9867 1.45 1.1083
4× 4,10% 0.2783 19.2132 1.1119 0.9013
5× 5,2% 0.4099 74.8831 2.2458 1.605

Table 3. Spectral angle (in degrees) between original and recon-
structed sets.

4.2. Sub-pixel labeling: spectral unmixing

Full-pixel classification provides with a fairly accurate, broad repre-
sentation of the scene. However, in some cases, and as previously

4In Table 4, “training samples” refers to samples in the same spatial loca-
tion as those used for training in thea-priori sources. Due to the sampling and
reconstruction process, these samples are not any longer identical to those in
the tested image. Same for third column of Table 5.



C1 C2 C3 C4 C5 C6 C7 C8 C9
0.736 0.991 1 0.985 0.991 1 0.746 0.770 0.988
0.442 1 1 0.894 1 1 0.120 0.960 0.973

Table 4. Per class classification accuracies, using a-priori sources
for dictionary learning, for the reconstructed APHill image with3×
3 patches and sampling20% of the data. First row: classification for
training samples. Second row: classification for validation samples.

patch size, data % Training Validation Training Validation
Original 0.9965 0.9851 - -
3× 3,2% 0.9561 0.8748 0.7910 0.7514
3× 3,5% 0.9910 0.9529 0.8745 0.8295
3× 3,10% 0.9920 0.9845 0.9195 0.8593
3× 3,20% 0.9898 0.9864 0.9452 0.8903
4× 4,2% 0.9842 0.9175 0.8288 0.8109
4× 4,5% 0.9940 0.9727 0.8834 0.8289
4× 4,10% 0.9951 0.9783 0.9287 0.8617
5× 5,2% 0.9954 0.9535 0.8412 0.8091

Table 5. Overall classification accuracies for the original and
reconstructed APHill images. The first two columns show over-
all training and validation results for the case where the training
sources are taken from the image. The last two columns show overall
training and validation accuracies for the case where fully sampled
spectra is available for training.

suggested, it may be necessary to go further than the full-pixel level
in situations where there are sub-pixel targets, or, as commonly en-
countered in overhead imaging, where partial occlusions may occur
due to elevation differences. Consider the example illustrated in Fig-
ure 3, for urban HSI. It consists of a road surrounded by grass and
trees. A full-pixel detection is unable to give partial information
about an occluded (by trees) section of the road (see box in the mid-
dle figure), or regions where tree branches and grass are in the same
area. Sub-pixel labeling on the other hand provides a clearer char-
acterization of the scene composition, and the variability associated
to each of these classes is appropriately accounted with a “learned
dictionary endmember.”
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Fig. 2. Left: False RGB composite of a subset of the APHill scene.
Middle: full-pixel classification of original image. Right: full-pixel
classification with reconstructed data from98% of the data missing,
and3 × 3 spatial blocks. See [9] for details on the reconstruction
technique. (This is a color figure.)

5. CONCLUDING REMARKS

We proposed a supervised classification algorithm at the full-pixel
and sub-pixel levels using learned sparse representations. We re-
ported the results on two hyperspectral datasets, and we also showed
the potential for a Bayesian compressed sensing technique to help
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Fig. 3. Left: False RGB composite of a subset of the Urban scene.
The3×2 white rectangle contains a partially occluded section of the
road. Middle: Full-pixel classification. The class labels assigned to
the pixels inside the rectangle are: road, trees; trees, trees; trees,
trees. Note how the road is not complete due to the mixing. Right:
Sub-pixel classification. The mixtures obtained in the rectangle are:
0.07 trees +0.14 trees +0.78 road,0.24 trees +0.46 trees +0.29
road; 0.42 trees +0.51 road, 0.81 trees +0.19 road; 0.46 trees +
0.45 road, 0.85 trees +0.15 road. Color is assigned by averaging
the nonzero coefficients from each class. (This is a color figure.)

in solving acquisition, transmission, and storage issues related to
HSI. This suggests possible future sensing modes like HSI video and
much faster area coverage. Furthermore, noise and data redundancy
are managed efficiently by the dictionary learning based classifica-
tion technique, without the need for explicit dimension reduction or
computationally intensive algorithms associated with kernel meth-
ods.
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